Enhanced binding of Aspergillus fumigatus spores to A549 epithelial cells and extracellular matrix proteins by a component from the spore surface and inhibition by rat lung lavage fluid.
نویسندگان
چکیده
BACKGROUND Aspergillus fumigatus is a pathogenic fungus which causes a range of diseases, particularly in the human lung. The pathological mechanism is unknown but may involve a complex mixture of biomolecules which can diffuse from the spore surface. This material is known as A fumigatus diffusate (AfD) and has previously been shown to have a range of immunosuppressive functions. It is hypothesised that AfD may influence the binding of spores to extracellular matrix (ECM) proteins and lung epithelial cells, thereby affecting the ability of the fungus to cause infection. METHODS The binding of spores to ECM proteins and to epithelial cells was carried out using a direct binding assay in microtitre plates and spores were counted by phase contrast microscopy. Rat bronchoalveolar lavage (BAL) fluid was enriched for surfactant protein D (SP-D) using maltose agarose affinity chromatography. The effects of AfD and the SP-D enriched BAL fluid were assessed by pre-incubation with ECM proteins or epithelial cells in the direct binding assay. RESULTS AfD enhanced the binding of spores to laminin by 137% and to A549 epithelial cells by 250%. SP-D enriched BAL fluid inhibited spore binding to ECM proteins and epithelial cells. Pre-incubation of ECM proteins and epithelial cells with SP-D enriched BAL fluid prevented the enhancement of spore binding by AfD, and pre-incubation of ECM proteins and epithelial cells with AfD prevented the inhibition of spore binding by SP-D enriched BAL fluid. This pretreatment did not prevent the enhancement of spore binding, giving an increase of 95% for collagen I, 80% for fibronectin, 75% for laminin, and 150% for A549 cells. CONCLUSIONS The hypothesis that AfD would affect spore binding to ECM proteins and epithelial cells was confirmed. Rat BAL fluid, with SP-D as the possible bioactive agent, prevented this enhancement. The in vivo significance is unclear but the enhanced binding of spores may increase the chance of fungal infection in the lung which could be prevented by the protective effects of lung surfactant components (possibly SP-D). The results suggest that there may be competition between AfD and a BAL fluid component (possibly SP-D) for the same or similar binding sites on ECM proteins and epithelial cells. Whether this competition occurs in vivo requires further investigation.
منابع مشابه
Binding of Aspergillus fumigatus spores to lung epithelial cells and basement membrane proteins: relevance to the asthmatic lung.
BACKGROUND Aspergillus fumigatus is an opportunistic pathogen to which asthmatic subjects are particularly susceptible. The ability of spores of A fumigatus to bind to pulmonary cells and basement membrane proteins was investigated to determine the mechanisms involved in this susceptibility. METHODS Cells of the A549 pulmonary epithelial cell line or purified basement membrane proteins were i...
متن کاملH-ficolin binds Aspergillus fumigatus leading to activation of the lectin complement pathway and modulation of lung epithelial immune responses.
Aspergillus fumigatus is an opportunistic fungal pathogen that typically infects the lungs of immunocompromised patients leading to a high mortality. H-Ficolin, an innate immune opsonin, is produced by type II alveolar epithelial cells and could participate in lung defences against infections. Here, we used the human type II alveolar epithelial cell line, A549, to determine the involvement of H...
متن کاملResistance of spores of Aspergillus fumigatus to ingestion by phagocytic cells.
Phagocytic cells are believed to have an important role in the eradication of fungal spores from the lung. The ability of human and mouse cells to phagocytose the opportunistic fungus Aspergillus fumigatus has been examined, spores of the non-pathogenic fungus Penicillium ochrochloron being used for comparison. Most spores became associated with cells. Those of A fumigatus appeared to remain bo...
متن کاملEvaluation of silica nanoparticles cytotoxicity (20-40 nm) on cancerous epithelial cell (A549) and fibroblasts cells of human normal lung fibroblast (MRC5)
Introduction: Silica nanoparticles have received more attraction in medical and industrial applications due to their unique properties such as small size, the possibility of surface functionalization, ease of production, and low cost. So, it is necessary to study the respiratory toxicity of occupational exposure due to the production and increasing use of silica nanoparticles, especially in the...
متن کاملDiffusible component from the spore surface of the fungus Aspergillus fumigatus which inhibits the macrophage oxidative burst is distinct from gliotoxin and other hyphal toxins.
BACKGROUND The fungus Aspergillus fumigatus, whose spores are present ubiquitously in the air, causes a range of diseases in the human lung. A small molecular weight (< 10 kD) heat stable toxin released from the spores of clinical and environmental isolates of A fumigatus within minutes of deposition in aqueous solution has previously been described. A key effect of the toxin was to inhibit the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Thorax
دوره 55 7 شماره
صفحات -
تاریخ انتشار 2000